2021

  1. J. Baker, et al., High angular resolution gravitational wave astronomy, Exp. Astron. (submitted), arXiv:1908.11410

  2. A. Sesana, N. Korsakova, et al., Unveiling the gravitational Universe at μ-Hz frequencies, Exp. Astron. (submitted), arXiv:1908.11391

  3. L. Shao, Pulsar tests of the graviton mass, Astron. Nachrichten (submitted), arXiv:2009.06817

2020

  1. T. Akutsu, et al., Overview of KAGRA: Calibration, detector characterization, physical environmental monitors, and the geophysics interferometer, arXiv:2009.09305

  2. K. Liu, L. Guillemot, A. Istrate, L. Shao, T.M. Tauris, N. Wex, et al., A revisit of PSR J1909$-$3744 with 15-year high-precision timing, Mon. Not. R. Astron. Soc. (accepted), arXiv:2009.12544

  3. T. Akutsu, et al., Overview of KAGRA: KAGRA science, Prog. Theor. Exp. Phys. (accepted), arXiv:2008.02921

  4. L. Shao, Combined search for anisotropic birefringence in the gravitational-wave transient catalog GWTC-1, Phys. Rev. D 101 (2020) 104019

  5. L. Shao, N. Wex, S.-Y. Zhou, New graviton mass bound from binary puslars, Phys. Rev. D 102 (2020) 024069

  6. R. Xu, Y. Gao, L. Shao, Strong-field effects in massive scalar-tensor gravity for slowly spinning neutron stars and application to X-ray pulsar pulse profiles, Phys. Rev. D 102 (2020) 064057

  7. Y. Gao, L. Shao, R. Xu, L. Sun, C. Liu, R.-X. Xu, Triaxially-deformed freely-precessing neutron stars: continuous electromagnetic and gravitational radiation, Mon. Not. R. Astron. Soc. 498 (2020) 1826

  8. X. Miao, J. Zhao, L. Shao, N. Wex, M. Kramer, B.-Q. Ma, Tests of conservation laws in post-Newtonian gravity with binary pulsars, Astrophys. J. 898 (2020) 69

  9. C. Liu, L. Shao, J. Zhao, Y. Gao, Multiband observation of LIGO/Virgo binary black hole mergers in the gravitational-wave transient catalog GWTC-1, Mon. Not. R. Astron. Soc. 496 (2020) 182

  10. Z. Wang, L. Shao, L.-X. Li, Resonant instability of axionic dark matter clumps, J. Cosmol. Astropart. Phys. 07 (2020) 038

  11. R. Xu, J. Zhao, L. Shao, Neutron star structure in the minimal gravitational standard-model extension and the implication to continuous gravitational waves, Phys. Lett. B 803 (2020) 135283

  12. L. Shao, Pulsar tests of the gravitational Lorentz violation, in Proceedings of the Eighth Meeting on CPT and Lorentz Symmetry (World Scientific, Singapore, 2020), p. 170

  13. K. Wang, S.-Q. Xi, L. Shao, R.-Y. Liu, Z. Li, Z.-K. Zhang, Limiting superluminal neutrino velocity and Lorentz invariance violation by neutrino emission from the blazar TXS 0506+056, Phys. Rev. D 102 (2020) 063027

  14. Z. Xiao, L. Shao, The CPT-violating effects on neutrons’ gravitational bound state, J. Phys. G: Nucl. Part. Phys. 47 (2020) 085002

  15. X. Liu, Z. Cao, L. Shao, Validating the effective-one-body numerical-relativity waveform models for spin-aligned binary black holes along eccentric orbits, Phys. Rev. D 101 (2020) 044049

  16. M. Arca Sedda, C.P.L. Berry, K. Jani, et al., The missing link in gravitational-wave astronomy: Discoveries waiting in the decihertz range, Class. Quantum Grav. 37 (2020) 215011

  17. D. Psaltis, et al., Gravitational test beyond the first post-Newtonian order with the shadow of the M87 black hole, Phys. Rev. Lett. 125 (2020) 141104

  18. M. Wielgus, et al., Monitoring the morphology of M87$^\star$ in 2009-2017 with the Event Horizon Telescope, Astrophys. J. 901 (2020) 67

  19. J.-Y. Kim, et al., Event Horizon Telescope imaging of the archetypical blazar 3C 279 at an extreme 20 microarcsecond resolution, Astron. & Astrophys. 640 (2020) A69

  20. R. Gold, et al., Verification of radiative transfer schemes for the EHT, Astrophys. J. 897 (2020) 148

  21. A.E. Broderick, et al., Themis: A parameter estimation framework for the Event Horizon Telescope, Astrophys. J. 897 (2020) 139

  22. F. Roelofs, et al., SYMBA: An end-to-end VLBI synthetic data generation pipeline, Astron. & Astrophys. 636 (2020) A5

  23. A. Weltman, et al., Fundamental physics with the Square Kilometre Array, Publ. Astron. Soc. Aust. 37 (2020) e002

  24. E. Barausse, et al., Prospects for fundamental physics with LISA, Gen. Relativ. Gravit. 52 (2020) 81

  25. R. Xu, Spacetime nonmetricity and Lorentz violation, in Proceedings of the Eighth Meeting on CPT and Lorentz Symmetry (World Scientific, Singapore, 2020), p. 234

  26. 邵立晶, 引力波视角下的世界图景, 《科学通报》, 已接收


2019

  1. L. Shao, Q.G. Bailey, Testing the gravitational weak equivalence principle in the standard-model extension with binary pulsars, Phys. Rev. D 99 (2019) 084017

  2. L. Shao, Lorentz-violating matter-gravity couplings in small-eccentricity binary pulsars, Symmetry 11 (2019) 1098

  3. X. Miao, L. Shao, B.-Q. Ma, Bounding the mass of graviton in a dynamic regime with binary pulsars, Phys. Rev. D 99 (2019) 123015

  4. J. Zhao, L. Shao, Z. Cao, B.-Q. Ma, Reduced-order surrogate models for scalar-tensor gravity in the strong field regime and applications to binary pulsars and GW170817, Phys. Rev. D 100 (2019) 064034

  5. L. Shao, Degeneracy in studying the supranuclear equation of state and modified gravity with neutron stars, AIP Conference Proceedings 2127 (2019) 020016

  6. L. Shao, Testing fifth forces from the Galactic dark matter, Proceedings 17 (2019) 3

  7. A. Caputo, L. Sberna, M. Frias, D. Blas, P. Pani, L. Shao, W. Yan, Constraints on millicharged dark matter and axionlike particles from timing of radio waves, Phys. Rev. D 100 (2019) 063515

  8. B. Sun, Z. Cao, L. Shao, Constraints on fifth forces through perihelion precession of planets, Phys. Rev. D 100 (2019) 084030

  9. F. Zhang, L. Shao, W. Zhu, Gravitational-wave merging events from the dynamics of stellar mass binary black holes around the massive black hole in a galactic nucleus, Astrophys. J. 877 (2019) 87

  10. J. Liu, et al., A wide star−black-hole binary system from radial-velocity measurements, Nature 575 (2019) 618

  11. K. Chatziioannou, R. Cotesta, S. Ghonge, J. Lange, K.K.-Y. Ng, et al., On the properties of the massive binary black hole merger GW170729, Phys. Rev. D 100 (2019) 104015

  12. C. Goddi, et al., First M87 Event Horizon Telescope Results and the Role of ALMA, Messenger 177 (2019) 25

  13. O. Porth, K. Chatterjee, R. Narayan, C.F. Gammie, Y. Mizuno, et al., The event horizon general relativistic magnetohydrodynamic code comparison project, Astrophys. J. Suppl. 243 (2019) 26

  14. B.S. Sathyaprakash, A. Buonanno, L. Lehner, C. Van Den Broeck, et al., Extreme gravity and fundamental physics, Bulletin of the American Astronomical Society 51 (2019) 251

  15. G.C. Bower, et al., Fundamental physics with Galactic center pulsars, Bulletin of the American Astronomical Society 51 (2019) 438

  16. K. Akiyama, et al., First M87 Event Horizon Telescope results. VI. The shadow and mass of the central black hole, Astrophys. J. Lett. 875 (2019) L6

  17. K. Akiyama, et al., First M87 Event Horizon Telescope results. V. Physical origin of the asymmetric ring, Astrophys. J. Lett. 875 (2019) L5

  18. K. Akiyama, et al., First M87 Event Horizon Telescope results. IV. Imaging the central supermassive black hole, Astrophys. J. Lett. 875 (2019) L4

  19. K. Akiyama, et al., First M87 Event Horizon Telescope results. III. Data processing and calibration, Astrophys. J. Lett. 875 (2019) L3

  20. K. Akiyama, et al., First M87 Event Horizon Telescope results. II. Array and instrumentation, Astrophys. J. Lett. 875 (2019) L2

  21. K. Akiyama, et al., First M87 Event Horizon Telescope results. I. The shadow of the supermassive black hole, Astrophys. J. Lett. 875 (2019) L1

  22. R. Xu, Modifications to Plane Gravitational Waves from Minimal Lorentz Violation, Symmetry 11 (2019) 1318

  23. 高勇, 邵立晶, 徐仁新, 双中子星圆舞曲, 《中国国家天文》 9 (2019) 54

  24. 邵立晶, GW170817: 爱因斯坦对了吗?, 《物理》 48 (2019) 567


2018

  1. L. Shao, Q.G. Bailey, Testing velocity-dependent CPT-violating gravitational forces with radio pulsars, Phys. Rev. D 98 (2018) 084049

  2. 邵立晶 [编译], 一“波”发现, 《物理》 47 (2018) 734